Level Nine Sports, where families ski and ride...
The Kernel

 advertise with indeep media

RMIT’s Piezoelectric Keyboard Powered Laptops

Posted: June 27th, 2011 | Author: | Filed under: Favorite New Thought, M.Aaron Silverman | Tags: , , , , , , , , , , , | Comments Off on RMIT’s Piezoelectric Keyboard Powered Laptops

According to results of new research by Australian scientists from the Royal Melbourne Institute of Technology – RMIT – self-powered electronics have come one step closer to reality. RMIT researchers have successfully measured a piezoelectric film’s capacity for turning mechanical pressure into electricity. It may sound like an idea from the realm of science fiction, the discovery could eventually allow laptops to be powered through their typing.

“The concept of energy harvesting using piezoelectric nanomaterials has been demonstrated but the realisation of these structures can be complex and they are poorly suited to mass fabrication” said RMIT’s Dr. Bhaskaran.

In a crucial step towards the development of self-powering portable electronics, RMIT University researchers have for the first time characterised the ability of piezoelectric thin films to turn mechanical pressure into electricity. Lead co-author Dr Madhu Bhaskaran said the research combined the potential of piezoelectrics – materials capable of converting pressure into electrical energy – and the cornerstone of microchip manufacturing, thin film technology.

“The power of piezoelectrics could be integrated into running shoes to charge mobile phones, enable laptops to be powered through typing or even used to convert blood pressure into a power source for pacemakers – essentially creating an everlasting battery,” Dr Bhaskaran said.

Piezoelectric materials are able to to convert mechanical energy into electric power. Piezoelectricity as a phenomenon was discovered in the 19th century, and is used in things like electric cigarette lighters, which use a piezoelectric crystal capable of producing a high voltage electric current after being hit by a spring-loaded hammer, to ignite gas. Piezoelectric bulk or block materials (like crystals or ceramics) have been studied thoroughly, but research on thin films is relatively new. The scientists were able to quantify the amount of energy that can be generated by piezoelectric thin films coatings.

“Our study focused on thin film coatings because we believe they hold the only practical possibility of integrating piezoelectrics into existing electronic technology.” Dr. Bhaskaran

She believes it is possible to implement the discovery into consumer electronics on a wider scale. “The power of piezoelectrics could be integrated into running shoes to charge mobile phones, enable laptops to be powered through typing or even used to convert blood pressure into a power source for pacemakers – essentially creating an everlasting battery.”

The Australian Research Council-funded study assessed the energy generation capabilities of piezoelectric thin films at the nanoscale, for the first time precisely measuring the level of electrical voltage and current – and therefore, power – that could be generated.

Dr Bhaskaran co-authored the study with Dr Sharath Sriram, within RMIT’s Microplatforms Research Group, which is led by Professor Arnan Mitchell. The pair collaborated with Australian National University’s Dr Simon Ruffell on the research.

“With the drive for alternative energy solutions, we need to find more efficient ways to power microchips, which are the building blocks of everyday technology like the smarter phone or faster computer,” Dr Bhaskaran said. Dr. Bhaskaran worked with RMIT‘s Dr. Sharath Sriram, who is part of the Microplatforms Research Group, led by Professor Arnan Mitchell. Australian National University’s (ANU) Dr. Simon Ruffell also collaborated on the project. The results were published in the June 21st issue of the materials science journal, Advanced Functional Materials.

“The next key challenge will be amplifying the electrical energy generated by the piezoelectric materials to enable them to be integrated into low-cost, compact structures.”



M★S Read More on Piezoelectricity Below


Piezoelectricity is the charge which accumulates in certain solid materials (notably crystals, certain ceramics, and biological matter such as bone, DNA and various proteins) in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure. It is derived from the Greek piezo or piezein (πιέζειν), which means to squeeze or press, and electric or electron (ήλεκτρον), which stands for amber, an ancient source of electric charge. Piezoelectricity is the direct result of the piezoelectric effect.

The piezoelectric effect is understood as the linear electromechanical interaction between the mechanical and the electrical state in crystalline materials with no inversion symmetry.[3] The piezoelectric effect is a reversible process in that materials exhibiting the direct piezoelectric effect (the internal generation of electrical charge resulting from an applied mechanical force) also exhibit the reverse piezoelectric effect (the internal generation of a mechanical force resulting from an applied electrical field). For example, lead zirconate titanate crystals will generate measurable piezoelectricity when their static structure is deformed by about 0.1% of the original dimension. Conversely, those same crystals will change about 0.1% of their static dimension when an external electric field is applied to the material.

Piezoelectricity is found in useful applications such as the production and detection of sound, generation of high voltages, electronic frequency generation, microbalances, and ultrafine focusing of optical assemblies. It is also the basis of a number of scientific instrumental techniques with atomic resolution, the scanning probe microscopies such as STM, AFM, MTA, SNOM, etc., and everyday uses such as acting as the ignition source for cigarette lighters and push-start propane barbecues.

Discovery and Early Research

The pyroelectric effect, where a material generates an electric potential in response to a temperature change, was studied by Carl Linnaeus and Franz Aepinus in the mid-18th century. Drawing on this knowledge, both René Just Haüy and Antoine César Becquerel posited a relationship between mechanical stress and electric charge; however, experiments by both proved inconclusive.

The first demonstration of the direct piezoelectric effect was in 1880 by the brothers Pierre Curie and Jacques Curie. They combined their knowledge of pyroelectricity with their understanding of the underlying crystal structures that gave rise to pyroelectricity to predict crystal behavior, and demonstrated the effect using crystals of tourmaline, quartz, topaz, cane sugar, and Rochelle salt (sodium potassium tartrate tetrahydrate). Quartz and Rochelle salt exhibited the most piezoelectricity.

The Curies, however, did not predict the converse piezoelectric effect. The converse effect was mathematically deduced from fundamental thermodynamic principles by Gabriel Lippmann in 1881. The Curies immediately confirmed the existence of the converse effect, and went on to obtain quantitative proof of the complete reversibility of electro-elasto-mechanical deformations in piezoelectric crystals.

For the next few decades, piezoelectricity remained something of a laboratory curiosity. More work was done to explore and define the crystal structures that exhibited piezoelectricity. This culminated in 1910 with the publication of Woldemar Voigt’s Lehrbuch der Kristallphysik (textbook on crystal physics), which described the 20 natural crystal classes capable of piezoelectricity, and rigorously defined the piezoelectric constants using tensor analysis.


The nature of the piezoelectric effect is closely related to the occurrence of electric dipole moments in solids. The latter may either be induced for ions on crystal lattice sites with asymmetric charge surroundings (as in BaTiO3 and PZTs) or may directly be carried by molecular groups (as in cane sugar). The dipole density or polarization (dimensionality [Cm/m3] ) may easily be calculated for crystals by summing up the dipole moments per volume of the crystallographic unit cell.As every dipole is a vector, the dipole density P is also a vector or a directed quantity. Dipoles near each other tend to be aligned in regions called Weiss domains. The domains are usually randomly oriented, but can be aligned using the process of poling (not the same asmagnetic poling), a process by which a strong electric field is applied across the material, usually at elevated temperatures. Not all piezoelectric materials can be poled.

Of decisive importance for the piezoelectric effect is the change of polarization P when applying a mechanical stress. This might either be caused by a re-configuration of the dipole-inducing surrounding or by re-orientation of molecular dipole moments under the influence of the external stress. Piezoelectricity may then manifest in a variation of the polarization strength, its direction or both, with the details depending on 1. the orientation of P within the crystal, 2. crystal symmetry and 3. the applied mechanical stress. The change in P appears as a variation of surface charge density upon the crystal faces, i.e. as a variation of the electrical field extending between the faces, since the units of surface charge density and polarization are the same, [C/m2] = [Cm/m3]. However, piezoelectricity is not caused by a change in charge density on the surface, but by dipole density in the bulk. For example, a 1 cm3 cube of quartz with 2 kN (500 lbf) of correctly applied force can produce a voltage of 12500 V.

Piezoelectric materials also show the opposite effect, called converse piezoelectric effect, where the application of an electrical field creates mechanical deformation in the crystal.

Mathematical Description

Piezoelectricity is the combined effect of the electrical behavior of the material:

D = \varepsilon E \;

where D is the electric charge density displacement (electric displacement), ε is permittivity and E is electric field strength, and

Hooke’s Law:

S=s T \;

where S is strain, s is compliance and T is stress.

These may be combined into so-called coupled equations, of which the strain-charge form is:

 \{S\} = \left [s^E \right ]\{T\}+[d^t]\{E\}
 \{D\} = [d]\{T\}+\left [ \varepsilon^T \right ] \{E\} ,

where [d] is the matrix for the direct piezoelectric effect and [dt] is the matrix for the converse piezoelectric effect. The superscript E indicates a zero, or constant, electric field; the superscript T indicates a zero, or constant, stress field; and the superscript t stands for transposition of a matrix.

The strain-charge for a material of the 4mm (C4v) crystal class (such as a poled piezoelectric ceramic such as tetragonal PZT or BaTiO3) as well as the 6mm crystal class may also be written as (ANSI IEEE 176):

 \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix} = \begin{bmatrix} s_{11}^E & s_{12}^E & s_{13}^E & 0 & 0 & 0 \\ s_{21}^E & s_{22}^E & s_{23}^E & 0 & 0 & 0 \\ s_{31}^E & s_{32}^E & s_{33}^E & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44}^E & 0 & 0 \\ 0 & 0 & 0 & 0 & s_{55}^E & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66}^E=2\left(s_{11}^E-s_{12}^E\right) \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} 0 & 0 & d_{31} \\ 0 & 0 & d_{32} \\ 0 & 0 & d_{33} \\ 0 & d_{24} & 0 \\ d_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}
 \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} {\varepsilon}_{11} & 0 & 0 \\ 0 & {\varepsilon}_{22} & 0 \\ 0 & 0 & {\varepsilon}_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}

where the first equation represents the relationship for the converse piezoelectric effect and the latter for the direct piezoelectric effect.

Although the above equations are the most used form in literature, some comments about the notation are necessary. Generally D and E are vectors, that is, Cartesian tensor of rank-1; and permittivity ε is Cartesian tensor of rank 2. Strain and stress are, in principle, also rank-2 tensors. But conventionally, because strain and stress are all symmetric tensors, the subscript of strain and stress can be re-labeled in the following fashion: 11 → 1; 22 → 2; 33 → 3; 23 → 4; 13 → 5; 12 → 6. (Different convention may be used by different authors in literature. Say, some use 12 → 4; 23 → 5; 31 → 6 instead.) That is why S and T appear to have the “vector form” of 6 components. Consequently, s appears to be a 6 by 6 matrix instead of rank-4 tensor. Such a re-labeled notation is often called Voigt notation.

In total, there are 4 piezoelectric coefficients, dij, eij, gij, and hij defined as follows:

 d_{ij} = \left ( \frac{\partial D_i}{\partial T_j} \right )^E  = \left ( \frac{\partial S_j}{\partial E_i} \right )^T
 e_{ij} = \left ( \frac{\partial D_i}{\partial S_j} \right )^E  = -\left ( \frac{\partial T_j}{\partial E_i} \right )^S
 g_{ij} = -\left ( \frac{\partial E_i}{\partial T_j} \right )^D  = \left ( \frac{\partial S_j}{\partial D_i} \right )^T
 h_{ij} = -\left ( \frac{\partial E_i}{\partial S_j} \right )^D  = -\left ( \frac{\partial T_j}{\partial D_i} \right )^S

where the first set of 4 terms correspond to the direct piezoelectric effect and the second set of 4 terms correspond to the converse piezoelectric effect. A formalism has been worked out for those piezoelectric crystals, for which the polarization is of the crystal-field induced type, that allows for the calculation of piezoelectrical coefficients dij from electrostatic lattice constants or higher-order Madelung constants.

Crystal Classes

Of the thirty-two crystal classes, twenty-one are non-centrosymmetric (not having a centre of symmetry), and of these, twenty exhibit direct piezoelectricity (the 21st is the cubic class 432). Ten of these represent the polar crystal classes, which show aspontaneous polarization without mechanical stress due to a non-vanishing electric dipole moment associated with their unit cell, and which exhibit pyroelectricity. If the dipole moment can be reversed by the application of an electric field, the material is said to be ferroelectric.

  • Polar crystal classes: 1, 2, m, mm2, 4, 4 mm, 3, 3m, 6, 6 mm.
  • Piezoelectric crystal classes: 1, 2, m, 222, mm2, 4, 4, 422, 4 mm, 42m, 3, 32, 3m, 6, 6, 622, 6 mm, 62m, 23, 43m.

For polar crystals, for which P ≠ 0 holds without applying a mechanical load, the piezoelectric effect manifests itself by changing the magnitude or the direction of P or both. For the non-polar, but piezoelectric crystals, on the other hand, a polarization Pdifferent from zero is only elicited by applying a mechanical load. For them the stress can be imagined to transform the material from a non-polar crystal class (P =0) to a polar one, having P ≠ 0.


Many materials, both natural and man-made, exhibit piezoelectricity:

Naturally-occurring Crystals

Other Natural Materials

  • Bone: Dry bone exhibits some piezoelectric properties. Studies of Fukada et al. showed that these are not due to the apatite crystals, which are centrosymmetric, thus non-piezoelectric, but due to collagen. Collagen exhibits the polar uniaxial orientation of molecular dipoles in its structure and can be considered as bioelectret, a sort of dielectric material exhibiting quasipermanent space charge and dipolar charge. Potentials are thought to occur when a number of collagen molecules are stressed in the same way displacing significant numbers of the charge carriers from the inside to the surface of the specimen. Piezoelectricity of single individual collagen fibrils was measured using piezoresponse force microscopy, and it was shown that collagen fibrils behave predominantly as shear piezoelectric materials.

The piezoelectric effect is generally thought to act as a biological force sensor. This effect was exploited by research conducted at the University of Pennsylvania in the late 1970s and early 1980s, which established that sustained application of electrical potential could stimulate both resorption and growth (depending on the polarity) of bone in-vivo. Further studies in the 1990s provided the mathematical equation to confirm long bone wave propagation as to that of hexagonal (Class 6) crystals.

Man-made Crystals

Man-made Ceramics

The family of ceramics with perovskite or tungstenbronze structures exhibits piezoelectricity:

Lead-free Piezoceramics

More recently, there is growing concern regarding the toxicity in lead-containing devices driven by the result of restriction of hazardous substances directive regulations. To address this concern, there has been a resurgence in the compositional development of lead-free piezoelectric materials.

  • Sodium potassium niobate (NaKNb). In 2004, a group of Japanese researchers led by Yasuyoshi Saito discovered a sodium potassium niobate composition with properties close to those of PZT, including a high TC.
  • Bismuth ferrite (BiFeO3) is also a promising candidate for the replacement of lead-based ceramics.
  • Sodium niobate NaNbO3

So far, neither the environmental impact nor the stability of supplying these substances have been confirmed.


  • Polyvinylidene fluoride (PVDF): PVDF exhibits piezoelectricity several times greater than quartz. Unlike ceramics, where the crystal structure of the material creates the piezoelectric effect, in polymers the intertwined long-chain molecules attract and repel each other when an electric field is applied.


Piezoelectric crystals are now used in numerous ways:

High Voltage and Power Sources

Direct piezoelectricity of some substances like quartz, as mentioned above, can generate potential differences of thousands of volts.

  • The best-known application is the electric cigarette lighter: pressing the button causes a spring-loaded hammer to hit a piezoelectric crystal, producing a sufficiently high voltage electric current that flows across a small spark gap, thus heating and igniting the gas. The portable sparkers used to light gas grills or stoves work the same way, and many types of gas burners now have built-in piezo-based ignition systems.
  • A similar idea is being researched by DARPA in the United States in a project called Energy Harvesting, which includes an attempt to power battlefield equipment by piezoelectric generators embedded in soldiers‘ boots. However, these energy harvesting sources by association have an impact on the body. DARPA’s effort to harness 1-2 watts from continuous shoe impact while walking were abandoned due to the impracticality and the discomfort from the additional energy expended by a person wearing the shoes. Other energy harvesting ideas include harvesting the energy from human movements in train stations or other public places and converting a dance floor to generate electricity. Vibrations from industrial machinery can also be harvested by piezoeletric materials to charge batteries for backup supplies or to power low power microprocessors and wireless radios.
  • A piezoelectric transformer is a type of AC voltage multiplier. Unlike a conventional transformer, which uses magnetic coupling between input and output, the piezoelectric transformer uses acoustic coupling. An input voltage is applied across a short length of a bar of piezoceramic material such as PZT, creating an alternating stress in the bar by the inverse piezoelectric effect and causing the whole bar to vibrate. The vibration frequency is chosen to be the resonant frequency of the block, typically in the 100 kilohertz to 1 megahertz range. A higher output voltage is then generated across another section of the bar by the piezoelectric effect. Step-up ratios of more than 1000:1 have been demonstrated. An extra feature of this transformer is that, by operating it above its resonant frequency, it can be made to appear as an inductive load, which is useful in circuits that require a controlled soft start.These devices can be used in DC-AC inverters to drive cold cathode fluorescent lamps. Piezo transformers are some of the most compact high voltage sources.


The principle of operation of a piezoelectric sensor is that a physical dimension, transformed into a force, acts on two opposing faces of the sensing element. Depending on the design of a sensor, different “modes” to load the piezoelectric element can be used: longitudinal, transversal and shear.

Detection of pressure variations in the form of sound is the most common sensor application, e.g. piezoelectric microphones (sound waves bend the piezoelectric material, creating a changing voltage) and piezoelectric pickups for Acoustic-electric guitars. A piezo sensor attached to the body of an instrument is known as a contact microphone.

Piezoelectric sensors especially are used with high frequency sound in ultrasonic transducers for medical imaging and also industrial nondestructive testing (NDT).

For many sensing techniques, the sensor can act as both a sensor and an actuator – often the term transducer is preferred when the device acts in this dual capacity, but most piezo devices have this property of reversibility whether it is used or not. Ultrasonic transducers, for example, can inject ultrasound waves into the body, receive the returned wave, and convert it to an electrical signal (a voltage). Most medical ultrasound transducers are piezoelectric.

In addition to those mentioned above, various sensor applications include:

  • Piezoelectric elements are also used in the detection and generation of sonar waves.
  • Power monitoring in high power applications (e.g. medical treatment, sonochemistry and industrial processing).
  • Piezoelectric microbalances are used as very sensitive chemical and biological sensors.
  • Piezos are sometimes used in strain gauges.
  • Piezoelectric transducers are used in electronic drum pads to detect the impact of the drummer’s sticks.
  • Automotive engine management systems use piezoelectric transducers to detect detonation by sampling the vibrations of the engine block and also to detect the precise moment of fuel injection (needle lift sensors).
  • Ultrasonic piezo sensors are used in the detection of acoustic emissions in acoustic emission testing.
  • Crystal earpieces are sometimes used in old or low power radios


As very high electric fields correspond to only tiny changes in the width of the crystal, this width can be changed with better-than-micrometer precision, making piezo crystals the most important tool for positioning objects with extreme accuracy — thus their use in actuators. Multilayer ceramics, using layers thinner than 100 micrometres, allow reaching high electric fields with voltage lower than 150 V. These ceramics are used within two kinds of actuators: direct piezo actuators and Amplified Piezoelectric Actuators. While direct actuator’s stroke is generally lower than 100 micrometres, amplified piezo actuators can reach millimeter strokes.

  • Loudspeakers: Voltage is converted to mechanical movement of a piezoelectric polymer film.
  • Piezoelectric motors: piezoelectric elements apply a directional force to an axle, causing it to rotate. Due to the extremely small distances involved, the piezo motor is viewed as a high-precision replacement for the stepper motor.
  • Piezoelectric elements can be used in laser mirror alignment, where their ability to move a large mass (the mirror mount) over microscopic distances is exploited to electronically align some laser mirrors. By precisely controlling the distance between mirrors, the laser electronics can accurately maintain optical conditions inside the laser cavity to optimize the beam output.
  • A related application is the acousto-optic modulator, a device that scatters light off of sound waves in a crystal, generated by piezoelectric elements. This is useful for fine-tuning a laser’s frequency.
  • Atomic force microscopes and scanning tunneling microscopes employ converse piezoelectricity to keep the sensing needle close to the probe.
  • Inkjet printers: On many inkjet printers, piezoelectric crystals are used to drive the ejection of ink from the inkjet print head towards the paper.
  • Diesel engines: high-performance common rail diesel engines use piezoelectric fuel injectors, first developed by Robert Bosch GmbH, instead of the more common solenoid valve devices.
  • Active control of vibration using amplified actuators.
  • X-ray shutters.
  • XY stages for micro scanning used in infrared cameras.
  • Moving the patient precisely inside active CT and MRI scanners where the strong radiation or magnetism precludes electric motors.

Frequency Standard

The piezoelectrical properties of quartz are useful as standard of frequency.

  • Quartz clocks employ an crystal oscillator made from a quartz crystal that uses a combination of both direct and converse piezoelectricity to generate a regularly timed series of electrical pulses that is used to mark time. The quartz crystal (like any elastic material) has a precisely defined natural frequency (caused by its shape and size) at which it prefers to oscillate, and this is used to stabilize the frequency of a periodic voltage applied to the crystal.
  • The same principle is critical in all radiotransmitters and receivers, and in computers where it creates a clock pulse. Both of these usually use a frequency multiplier to reach gigahertz ranges.

Piezoelectric Motors

Types of piezoelectric motor include:

All these motors, except the stepping stick-slip motor work on the same principle. Driven by dual orthogonal vibration modes with a phase difference of 90°, the contact point between two surfaces vibrates in an elliptical path, producing a frictional force between the surfaces. Usually, one surface is fixed causing the other to move. In most piezoelectric motors the piezoelectric crystal is excited by a sine wave signal at the resonant frequency of the motor. Using the resonance effect, a much lower voltage can be used to produce a high vibration amplitude.

Stick-slip motor works using the inertia of a mass and the friction of a clamp. Such motors can be very small. Some are used for camera sensor displacement, allowing anti shake function.

Reduction of Vibrations and Noise

Different teams of researchers have been investigating ways to reduce vibrations in materials by attaching piezo elements to the material. When the material is bent by a vibration in one direction, the vibration-reduction system responds to the bend and sends electric power to the piezo element to bend in the other direction. Future applications of this technology are expected in cars and houses to reduce noise.

In a demonstration at the Material Vision Fair in Frankfurt in November 2005, a team from TU Darmstadt in Germany showed several panels that were hit with a rubber mallet, and the panel with the piezo element immediately stopped swinging.

Piezoelectric ceramic fiber technology is being used as an electronic damping system on some HEAD tennis rackets.

See Also


  1. ^ Holler, F. James; Skoog, Douglas A; Crouch, Stanley R (2007). “Chapter 1”. Principles of Instrumental Analysis (6th ed.). Cengage Learning. p. 9.ISBN 9780495012016.
  2. ^ Harper, Douglas. “piezoelectric”. Online Etymology Dictionary.
  3. ^ Gautschi, G (2002). Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers.. Springer.
  4. ^ Lippman, G. (1881). “Principe de la conservation de l’électricité” (in French). Annales de chimie et de physique 24: 145.
  5. ^ a b c M. Birkholz (1995). “Crystal-field induced dipoles in heteropolar crystals – II. physical significance”. Z. Phys. B 96: 333–340. Bibcode1995ZPhyB..96..333B. doi:10.1007/BF01313055.
  6. ^ S. Trolier-McKinstry (2008). “Chapter3: Crystal Chemistry of Piezoelectric Materials”. In A. Safari, E.K. Akdo˘gan. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer. ISBN 9780387765389.
  7. ^ Sensor Sense: Piezoelectric Force Sensors
  8. ^ Damjanovic, Dragan (1998). “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics”. Reports on Progress in Physics 61: 1267–1324. Bibcode 1998RPPh…61.1267D. doi:10.1088/0034-4885/61/9/002.
  9. ^ Kochervinskii, V (July 2003). “Piezoelectricity in Crystallizing Ferroelectric Polymers”. Crystallography Reports 48 (4): 649–675. Bibcode2003CryRp..48..649K. doi:10.1134/1.1595194.
  10. ^ M. Minary-Jolandan, and Min-Feng Yu, Nanotechnology 20 (2009) 085706 (6pp)
  11. ^ Lakes, Roderic. “Electrical Properties of Bone: A Review”. University of Wisconsin–Madison.
  12. ^ Becker, Robert O; Marino, Andrew A (1982). “Chapter 4: Electrical Properties of Biological Tissue (Piezoelectricity)”. Electromagnetism & Life.Albany, New York: State University of New York Press. ISBN 0-87395-560-9.
  13. ^ Pollack, S.R; Korostoff, E., Starkebaum, W. y Lannicone, W (1979). ed. Brighton, C.T., Black, J. and Pollack, S.R.. ed. “Micro-electrical studies of stress-generated potentials in bone.”. Electrical Properties of Bone and Cartilage (New York City: Grune & Stratton, Inc).
  14. ^ Fotiadis, D.I; Foutsitzi, G., and Massalas, C.V (1999). “Wave propagation modeling in human long bones”. Acta Mechanica 137: 65–81.doi:10.1007/BF01313145.
  15. ^ Saito, Yasuyoshi; Takao, Hisaaki; Tanil, Toshihiko; Nonoyama, Tatsuhiko; Takatoril Kazumasa; Homma, Takahiko; Nagaya, Toshiatsu; Nakamura, Masaya (2004-11-04). “Lead-free piezoceramics”. Nature (Nature Publishing Group) 432 (7013): 81–87. Bibcode 2004Natur.432…84S.doi:10.1038/nature03028. PMID 15516921.
  16. ^ Richard, Michael Graham (2006-08-04). “Japan: Producing Electricity from Train Station Ticket Gates”. TreeHugger. Discovery Communications, LLC.
  17. ^ Wright, Sarah H (2007-07-25). “MIT duo sees people-powered “Crowd Farm””. MIT news. Massachusetts Institute of Technology.
  18. ^ Kannampilly, Ammu (2008-07-11). “How to Save the World One Dance at a Time”. ABC. ABC.
  19. ^ True Grid Independence: Robust Energy Harvesting System for Wireless Sensors Uses Piezoelectric Energy Harvesting Power Supply and Li-Poly Batteries with Shunt Charger
  20. ^ Phillips, James R (2000-08-10). “Piezoelectric Technology: A Primer”. eeProductCenter. TechInsights.
  21. ^ How Rocket-Propelled Grenades Work by Shane Speck
  22. ^ The scanning mechanism for ROSETTA/MIDAS from an engineering model to the flight model
  23. ^ Simonsen, Torben R. Piezo in space Electronics Business (in Danish), 27 September 2010. Retrieved: 28 September 2010.
  24. ^ “Isn’t it amazing how one smart idea, one chip and an intelligent material has changed the world of tennis?”. HEAD. Retrieved 2008-02-27.
  25. ^ Baltaci V, Ayvaz OU, Unsal E, et al. (May 2009). “The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure”. Fertil. Steril. 94 (3): 900–4. doi:10.1016/j.fertnstert.2009.03.107. PMID 19464000.

International standards

  • ANSI-IEEE 176 (1987) Standard on Piezoelectricity
  • IEEE 177 (1976) Standard Definitions & Methods of Measurement for Piezoelectric Vibrators
  • IEC 444 (1973) Basic method for the measurement of resonance freq & equiv series resistance of quartz crystal units by zero-phase technique in a pi-network
  • IEC 302 (1969) Standard Definitions & Methods of Measurement for Piezoelectric Vibrators Operating over the Freq Range up to 30 MHz

External Links

Comments are closed.